Tools & Techniques Analytical science, Drug discovery, Infectious diseases

A Fast and High Precision Influenza Vaccine Potency Assay

Vaccines are biological preparations that contain agents resembling disease causing microorganisms, and can improve immunity against a specific disease. They are typically prepared from inactivated or weakened forms of the microbe or its toxins, or surface proteins. Classical vaccines against the influenza virus are developed in embryonated hen eggs and may include whole virus, split virus or a purified subunit with every component other than hemagglutinin (HA) or neuraminidase (NA) removed.1 The target molecule for the protective immune response triggered by vaccination is generally accepted to be the HA molecule; a glycoprotein found on the surface of the influenza virus. Measuring the vaccine potency or the biologically active components is critical to the determination of the vaccine’s effective dose. In addition, the stability of the vaccine has major impact on its usage for immunization programs worldwide. Although real-time stability studies under different storage conditions is preferable, thermal stability testing using potency assays with samples subjected to heat or environmental stress conditions can be used as predicators of vaccine stability over time.2

Read the full article now

Log in or register to read this article in full and gain access to The Translational Scientist’s entire content archive. It’s FREE!

Login
Receive content, products, events as well as relevant industry updates from The Translational Scientist and its sponsors.

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

Register to The Translational Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts

Register