Cookies

Like most websites The Translational Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Tools & Techniques Analytical science, Imaging

Chemical Reaction Monitoring with a Spectrometer

Reaction Monitoring with the QE Pro Spectrometer: Chemical Stoplight Reaction

The chemical stoplight reaction is a reversible oxidation reduction reaction featuring the redox indicator dye indigo carmine. During the reaction, the solution changes from green to red to yellow as the indicator dye is oxidized and then reduced when oxygen levels decrease. Vigorous mixing to reintroduce oxygen restarts the reaction. While the color change is the star of many classroom demonstrations and online videos, the change in absorbance during the reaction can be used to characterize the kinetics of the reaction. In this application note, we describe the use of the QE Pro spectrometer for measuring the change in absorbance during the chemical stoplight reaction. Enhanced spectrometer features including onboard buffering for data integrity are described.

Introduction

The study of chemical kinetics provides important information on the rate and mechanism of the chemical reactions that occur all around us -- from inside the cells of the human body to the ozone layer in the atmosphere. Characterizing the impact of parameters such as reactant concentration, temperature, pH and the presence of a catalyst are vital to optimizing reaction conditions and understanding the mechanism of the reaction. In an industrial or process setting, detailed knowledge of the chemical kinetics for a reaction enables the use of the optimum conditions and reactant concentrations to maximize product yield while minimizing reactant waste. In the human body, chemical kinetics measurements are made to characterize the impact of enzyme catalysts on metabolism and to understand the factors critical to the accurate dosing and release of a medication.

In this application note, the QE Pro is used to collect the absorbance data needed to characterize the chemical kinetics for a reversible oxidation reduction reaction featuring indigo carmine indicator dye. The redox (reduction oxidation) indicator dye indigo carmine exists in oxidized, reduced and intermediate forms depending on its environment. Each form has a slightly different chemical structure resulting in the absorption of different wavelengths of light. When indigo carmine is mixed with a reducing agent (dextrose) in a basic solution (NaOH), it acts an indicator of the state of the redox process. When the solution is first mixed by shaking the solution to introduce oxygen, the indicator is in its green oxidized form (most exposed to oxygen in the air). The reaction mixture color changes to red and then to yellow as the indigo carmine goes from an oxidized to a reduced state.

Enjoy our FREE content!

Log in or register to read this article in full and gain access to The Translational Scientist’s entire content archive. It’s FREE and always will be!

Login if you already created an account

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
Register

Or Login as a Guest or via Social Media

Related Solutions

Tools & Techniques

Top reasons to upgrade to a Q Exactive HF-X hybrid quadrupole-Orbitrap mass spectrometer

| Contributed by Thermo Fisher Scientific

Tools & Techniques

Raman Analysis of Pharmaceutical Ingredients

| Contributed by Ocean Optics

Tools & Techniques

SERS for Label-Free Biosensing

| Contributed by Ocean Optics

Newsletter

Send me the latest from The Translational Scientist.

Sign up now

Related Articles

Tools & Techniques

Gone Fishing

| Michael Schubert

Tools & Techniques

Source of Light – and Inspiration

| Rich Whitworth

Tools & Techniques

Right for Patients?

| Ellen Sigal

Most Popular

Register here

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts

Register