Cookies

Like most websites The Translational Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Research Field Cell & gene therapy

Retinoic Regeneration

From starfish and salamanders to fictional clawed superheroes, regeneration is a trait that has fascinated many – not only because it’s cool, but also because of its potential to revolutionize therapeutics. A team of researchers from Stanford University, Houston Methodist Research Institute, and Emory University School of Medicine, brought biomedicine slightly closer to realizing the dream, when they discovered another immune signaling pathway that could be manipulated to reprogram cells into pluripotency (1).

Read the full article now

Log in or register to read this article in full and gain access to The Translational Scientist’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Author

William Aryitey

My fascination with science, gaming, and writing led to my studying biology at university, while simultaneously working as an online games journalist. After university, I travelled across Europe, working on a novel and developing a game, before finding my way to Texere. As Associate Editor, I’m evolving my loves of science and writing, while continuing to pursue my passion for gaming and creative writing in a personal capacity.

Register to The Translational Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts

Register