Like most websites The Translational Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Research Field Drug discovery, Immunology

Antibody About Turn

The introduction of antibody therapeutics has been one of the greatest, recent advances in drug development. These are often thought of as the large molecular weight monoclonal antibodies, but there are many other interesting antibody formats too with significant potential for human medicine. I am the founding CEO of AdAlta, a company that was launched with a focus on both shark antibodies and a human equivalent called the i-body. Both the shark antibody and the i-body have unique characteristics that support their inclusion in this next generation of antibody therapeutics.

A traditional mAb possesses both a heavy and light chain, but shark antibodies have only a heavy chain (similar to camel antibodies, which are attracting a great deal of attention in the research community). Both shark and camel antibodies have a very long CDR3 binding loop. The traditional binding loop in a human antibody is 8-10 amino acids, but in the shark it can consist of up to 30 residues, increasing binding affinity. Shark proteins are also very stable, you can boil them or put them in acid! We have even put the i-body and shark antibodies in proteases and found that they did not degrade.

Read the full article now

Log in or register to read this article in full and gain access to The Translational Scientist’s entire content archive. It’s FREE and always will be!


Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Author

Sam Cobb

Sam Cobb is CEO of AdAlta, Australia.

Related Solutions

Research Field Drug discovery

Dental Curing Lights: Clinical Reality

| Contributed by Ocean Optics

Research Field Genetics

Measuring DNA Absorbance with the STS-UV

| Contributed by Ocean Optics


Send me the latest from The Translational Scientist.

Sign up now

Related Articles

Research Field Cancer

Cancer and the Microbiome

| Ivan Gladwyn-Ng, Alexander Maue

Research Field Neurological

Redirecting Cell Fate

| Jonathan James

Disease Area Cancer

Two-pronged Attack on Neuroblastoma

| Jonathan James

Register to The Translational Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts