Cookies

Like most websites The Translational Scientist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Disease Area Neurological, Cell & molecular biology

Neurons Under (Astrocytic) Attack

Scientists have been aware for more than a decade that astrocytes play a key role in the pathology of amyotrophic lateral sclerosis (ALS). Exactly how they contribute to neuronal death – a key feature of the condition – has remained a mystery. Many have focused on the catalog of molecules that astrocytes produce and exchange with neuronal cells. Now, a paper published in EBioMedicine describes a pathway for this process – at least in ALS patients carrying a specific genetic mutation (1)

“The problem has always been that we don’t know how astrocytes kill neurons in ALS,” says Laura Ferraiuolo, Associate Professor in Translational Neurobiology at the University of Sheffield, and one of the senior authors of the paper. Using both microarray and cellular analysis, her group has been identifying novel molecules involved in neuronal development. “We discovered that astrocytes secrete microRNAs (miRNAs), which regulate the expression of neuronal proteins that are important for axonal growth and the regulation of neuronal projections,” she says.

A major disease mechanism of ALS is synaptic loss, resulting in neuronal death (2). This led the team to consider a hypothesis: could dysregulation of these miRNAs be a major driver of this component of ALS pathology? A review of the medical literature revealed an interesting subpopulation of patients – those with mutations in a gene called C9orf72, which is found in 40 percent of familial and 8 percent of sporadic cases of ALS (3). “We found that ALS astrocytes from patients carrying a mutation in this gene secreted lower levels of miRNAs, thus causing a defect in neuronal axonal and neurite growth,” says Ferraiuolo. For the researchers, this avenue is ripe for exploration. “By demonstrating that astrocytes regulate some aspects of neuronal function through miRNAs, we’ve highlighted the potential that this class of molecules might be manipulated for therapeutic purposes,” says Ferraiuolo.

And the approach could have broad implications. “Manipulating the cross-talk between astrocytes and neurons or astrocytic function through miRNAs is applicable to a number of conditions,” explains Ferraiuolo. “In particular, the idea that we can support axonal growth via miRNAs is extremely relevant to Alzheimer’s, where synaptic loss is the main disease mechanism.”

But for now, the focus is solely on developing a suitable delivery mechanism. “We’re testing the idea that we can deliver miRNA-494 - a specific RNA we identified as a culprit of axonal degeneration -  using a gene therapy approach,” says Ferraiuolo. “There are of course several challenges related to safety and specificity that will have to be overcome. miRNAs, in particular, have several targets, so specificity will be the main challenge. We’re also working on several fronts to develop new therapeutic targets that could be applied as part of combination therapies.”

Receive content, products, events as well as relevant industry updates from The Translational Scientist and its sponsors.

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

  1. A Varcianna et al., “Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS”, EBioMedicine [Epub ahead of print] (2019). PMID: 30711519.
  2. CM Henstridge et al., “Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis”, Acta Neuropathol, 135, 213–26 (2018). PMID: 29273900.
  3. MP Adam et al., “C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia”, GeneReviews, January 8, 2015, University of Washington, Seattle. PMID: 25577924.
About the Author
Jonathan James

Most Popular
Register to The Translational Scientist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts

Register